<Scikit-learn>
Scikit-learn은 ML 코딩을 할 때 유용하게 쓸 수 있는 라이브러리이다
Scikit-learn에서 제공하는 대표적인 기능들은 다음과 같다
- useful dataset load
from sklearn import datasets
import numpy as np
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
print('Class labels:', np.unique(y))
- train, test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=1, stratify=y)
- data standardization
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
- using various ML model
<Perceptron with Scikit-learn>
Perceptron 학습
from sklearn.linear_model import Perceptron
ppn = Perceptron(eta0=0.1, random_state=1)
ppn.fit(X_train_std, y_train)
Acc 출력
from sklearn.metrics import accuracy_score
print('Accuracy: %.3f' % accuracy_score(y_test, y_pred))
// print('Accuracy: %.3f' % ppn.score(X_test_std, y_test))
학습 결과
'AI > ML PyTorch Scikit-Learn' 카테고리의 다른 글
Ch3. Overfitting Prevent Method (0) | 2024.07.16 |
---|---|
Ch3. Logistic Regression & Sigmoid (0) | 2024.07.11 |
Ch2. Adaline, 로스와 경사하강법(Adaline, Loss and Gradient Descent) (0) | 2024.07.02 |
Ch2. 퍼셉트론(Perceptron) (0) | 2024.06.27 |
Ch1. ML 도입 - ML의 종류와 시스템 (0) | 2024.06.27 |